
GLINT-RU: Gated Lightweight Intelligent Recurrent Units for
Sequential Recommender Systems

Sheng Zhang∗
City University of Hong Kong and
High Magnetic Field Laboratory,
Chinese Academy of Sciences
Hefei and Hong Kong, China
szhang844-c@my.cityu.edu.hk

Maolin Wang∗
City University of Hong Kong

Hong Kong, China
morin.wang@my.cityu.edu.hk

Wanyu Wang†
City University of Hong Kong

Hong Kong, China
wanyu.wang@my.cityu.edu.hk

Jingtong Gao
City University of Hong Kong

Hong Kong, China
jingtong.gao@my.cityu.edu.hk

Xiangyu Zhao
City University of Hong Kong

Hong Kong, China
xianzhao@cityu.edu.hk

Yu Yang
City University of Hong Kong

Hong Kong, China
yu.yang@cityu.edu.hk

Xuetao Wei
Southern University of
Science and Technology

Shenzhen, China
weixt@sustech.edu.cn

Zitao Liu
Jinan University
Guangzhou, China
liuzitao@jnu.edu.cn

Tong Xu
University of Science

and Technology of China
Hefei, China

tongxu@ustc.edu.cn

Abstract
Transformer-based models have gained significant traction in se-
quential recommender systems (SRSs) for their ability to capture
user-item interactions effectively. However, these models often suf-
fer from high computational costs and slow inference. Meanwhile,
existing efficient SRS approaches struggle to embed high-quality
semantic and positional information into latent representations. To
tackle these challenges, this paper introduces GLINT-RU, a light-
weight and efficient SRS leveraging a single-layer dense selective
Gated Recurrent Units (GRU) module to accelerate inference. By in-
corporating a dense selective gate, GLINT-RU adaptively captures
temporal dependencies and fine-grained positional information,
generating high-quality latent representations. Additionally, a par-
allel mixing block infuses fine-grained positional features into user-
item interactions, enhancing both recommendation quality and
efficiency. Extensive experiments on three datasets demonstrate
that GLINT-RU achieves superior prediction accuracy and infer-
ence speed, outperforming baselines based on RNNs, Transformers,
MLPs, and SSMs. These results establish GLINT-RU as a powerful
and efficient solution for SRSs. The implementation code is publicly
available for reproducibility. 1.

∗Equal contribution.
†Corresponding author.
1https://github.com/szhang-cityu/GLINT-RU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1245-6/25/08
https://doi.org/10.1145/3690624.3709304

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Recommender Systems, Sequential Recommender Systems, Gated
Recurrent Units, Efficient Model

ACM Reference Format:
Sheng Zhang, Maolin Wang, Wanyu Wang, Jingtong Gao, Xiangyu Zhao,
Yu Yang, Xuetao Wei, Zitao Liu, and Tong Xu. 2025. GLINT-RU: Gated Light-
weight Intelligent Recurrent Units for Sequential Recommender Systems. In
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V.1 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3690624.3709304

1 Introduction
In this era of data exploding, sequential recommender systems
(SRSs) [10, 12, 16–18, 20, 33, 35, 37] have gained much attention in
capturing users’ preferences within a large amount of sequential
interaction data. GRU4Rec [10] as one of the earliest session-based
recommendation models, employs stacked Gated Recurrent Units
(GRU) for item-to-item recommendations. However, the RNN-based
methods [10, 15] are fading from the recommendation realm due to
their relatively lower accuracy. In recent years, transformer-based
SRSs [12, 26] have become increasingly popular for the powerful
multi-head attention mechanism [28, 36]. They exhibit remarkable
ability in capturing sequential interactions and delivering accu-
rate predictions [14]. However, despite their effectiveness, current
transformer-based models suffer from substantial computational
demands and extended inference time, which is caused by the dot
product operation in the attention mechanism [18, 29, 40].

To tackle the issue of the high computational cost of transformer-
based SRSs, linear attention mechanisms are applied to reduce the
computational complexity. For example, LinRec [18] changes the

ar
X

iv
:2

40
6.

10
24

4v
3

 [
cs

.I
R

]
 1

2
A

pr
 2

02
5

https://doi.org/10.1145/3690624.3709304
https://doi.org/10.1145/3690624.3709304

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sheng Zhang, et al.

order of dot product between query and key matrices by design-
ing a special mapping, dramatically reducing the inference time.
LightSAN [6] projects historical interactions into interest represen-
tations with shorter lengths, thereby reducing the computational
complexity of transformers to a linear scale. MLP-based frame-
works [16, 21, 39] can also achieve fast inference speed and high
performance by reshaping input sequence tensors [7]. SSM-based
models [17, 31] outperforms the existing attention mechanism by
utilizing the efficient selective SSM [9], within which a structured
state tensor is used to address long-range dependencies.

However, to achieve high performance, the transformer-based
SRSs, even with linear attention mechanism, require deeply stacked
transformers, which decreases the model efficiency [34]. MLP-based
SRSs with sequence mixing layers might suffer from extended in-
ference time when dealing with long sequences. In addition, MLP-
based models struggle to capture fine-grained positional depen-
dencies. SSM-based models [17] may struggle to model effective
semantic features into latent representations in long/short-term
recommendation scenarios, as they might have difficulty learning
important interactions. In this paper, we aim to further improve the
efficiency and the accuracy of efficient models in various scenarios.

To further reduce resource consumption, accelerate inference
speed, and enhance the model performance, we propose a novel
efficient SRS framework named Gated Lightweight IntelligeNT
Recurrent Units (GLINT-RU). Considering that stacking hybrid
architectures may lead to a deeper model, which will cause a signif-
icant decrease in inference speed. and the traditional GRU module
lacks the ability to adaptively adjust the output and filter out unim-
portant interactions. To tackle these challenges, we employ various
gate mechanisms in appropriate positions to fully perceive the data
environment and filter information automatically [1, 3, 34]. We
introduce an expert mixing block that captures the item depen-
dencies via GRU and utilizes linear attention to capture the global
interaction information between users and items [11, 22]. This
strategy not only improves the inference speed due to the linear
computational complexity of paralleled GRU and linear attention
mechanism but also enhances the context information. Additionally,
we implement a dense selective GRU, which selects the output of
the GRU adaptively and considers the connections among adjacent
items. It leverages the gate mechanism to select crossed channels
and extracts short-duration patterns to refine the model’s under-
standing of user behavior dynamics. Moreover, a gated MLP block
is utilized to select the outputs of the expert mixing block, deeply
filtering the information based on the data environment.

We summarize the major contributions of our work as follows:
• In this paper, we introduce GLINT-RU, a novel and lightweight
SRS that achieves remarkable inference speed only requiring
a single layer. It is an advanced model that captures complex
semantic features and fine-grained positional representations
using an expert mixingmechanism, which substantially improves
the performance of GLINT-RU over existing efficient SRS models.

• We introduce a dense selective GRU module, which not only in-
corporates connections between adjacent items but also empow-
ers the model with the capability to selectively learn long-term
dependencies. The integration of this advanced GRU module into
the model markedly elevates its performance, establishing a new
standard for efficient recommender systems.

• We conduct extensive experiments to verify the efficiency and
effectiveness of GLINT-RU on various datasets and parameter
settings. Our GLINT-RU improves the training and inference
speed significantly and stably exhibits high performance.

2 Preliminaries
In this section we will briefly introduce our recommendation task,
and then introduce the basic efficient GRU and linear attention
modules used in our framework.

2.1 Problem Statement
For a sequential recommendation task, we have a set of users U =

{𝑢1, 𝑢2, . . . , 𝑢 |U | } who have historical interactions with a set of
items V = {𝑣1, 𝑣2, . . . , 𝑣 |V | }. Among these users, the 𝑖-th user has
a preferred item sequence denoted as 𝑠𝑖 = [𝑣 (𝑖)1 , 𝑣

(𝑖)
2 , . . . , 𝑣 (𝑖)𝑛𝑖],

where 𝑛𝑖 is the length of the item list that the 𝑖-th user interacts
with. Our goal is to design an efficient framework and predict the
rating score of the next item based on the historical interactions .

2.2 Gated Recurrent Units
As an essential part of GLINT-RU, the GRU [2] module contributes
to the recommendation task by capturing the dependencies among
the items and dynamically adjust its memory content [4, 24]. The
update mechanism of a GRU cell is formulated as follows:

𝒛𝑡 = 𝜎 (𝑾𝑧 · [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑧),
𝒓𝑡 = 𝜎 (𝑾𝑟 · [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑟),

𝒉̃𝑡 = tanh(𝑾 · [𝒓𝑡 ∗ 𝒉𝑡−1, 𝒙𝑡] + 𝒃),

𝒉𝑡 = 𝒛𝑡 ∗ 𝒉𝑡−1 + (1 − 𝒛𝑡) ∗ 𝒉̃𝑡 ,

(1)

where 𝜎 (·) is the sigmoid activation function, 𝒙𝑡 is the input of GRU
module in 𝑡-th time step, 𝒉𝑡 represents the 𝑡-th hidden states, 𝒛𝑡
and 𝒓𝑡 are the update gate and the reset gate, respectively. 𝒃𝑧 , 𝒃𝑟 , 𝒃
are bias,𝑾𝑧 ,𝑾𝑟 ,𝑾 are trainable weight matrices. As is shown in
Eq.(1), GRU uses the update gate to control the retained information
volume from previous hidden states in the current time step, while
the reset gate controls the information that should be forgotten.

The GRU (Gated Recurrent Unit) module, equipped with update
and reset gates in sequential GRU Cells, is adept at capturing the
relationships among the items throughout the sequence while main-
taining a relatively low computational complexity. However, the
sequential information in GRU cannot be interacted with, and each
hidden state is primarily encoded from preceding elements, which
restricts the representational capacity of GRU-based recommenda-
tion models, particularly in capturing complex item dependencies
across the entire sequence.

2.3 Linear Attention Mechanism
The attention mechanism as a powerful core of the transformer
structure, exhibits performance in learning sequence interactions in
recommendation tasks. However, the high computational cost of the
dot product between query matrix𝑸 and keymatrix 𝑲 substantially
lower the inference speed of transformer-based SRSs especially
when the sequence length 𝑁 is much larger than hidden size 𝑑 [25,
29]. To tackle this issue, the linear attentionmechanism [18] designs
a special mapping function to change the order of the dot product

GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada

and reduce the computational complexity to O(𝑁𝑑2). The linear
attention mechanism can be written as:

𝑨′ (𝑸, 𝑲, 𝑽) = X1 (𝑒𝑙𝑢 (𝑸))
(
X2 (𝑒𝑙𝑢 (𝑲))T 𝑽

)
, (2)

where X1 and X2 are row-wise and column-wise 𝐿2 normalization
mappings, respectively, 𝑸, 𝑲, 𝑽 are learnable query, key and value
matrices and 𝑨′ is the output attention score. This approach miti-
gates the issue that the softmax layer concentrates on the scores of
merely a few positions, enlarging the information capacity of the
attention mechanism [18]. By implementing linear attention, our
GLINT-RU framework is capable of learning interactions between
items in long sequences.

3 METHODOLOGY
In this section, we will introduce the overall framework and its com-
ponents that effectively capture semantic features and positional
information, followed by the complexity analysis of GLINT-RU.

3.1 Framework Overview
Many existing recommendation frameworks depend on transformer
structure [12, 18, 26], which incurs substantial computational over-
head and low inference speed. Restricted by the large computational
complexity of stacked transformers, linear attention-based mod-
els have approached a plateau in terms of minimizing inference
time and resource consumption. Uniquely, we propose an advanced
recommendation framework that integrates the linear attention
mechanism and efficient dense selective GRU module, which fur-
ther reduces the computational cost compared with stacked linear
transformers and SSM-based models. Additionally, this dense se-
lective GRU module also enables our framework to understand
both semantic features and dependencies from item sequences, and
substantially reduce the computational cost and inference time.

Figure 1.(a) shows the structure of our GLINT-RU. As is shown
in Figure 1.(b)-(d), GLINT-RU integrates an expert mixing block
for mixing sequential information from the dense selective GRU
expert and the linear attention expert, and a gated MLP block for
further learning and filtering complex user behaviors.

In the expert mixing block, the dense selective GRU module
is employed to capture the long/short-term item-wise dependencies,
and selectively learn the sequential information. In addition, the
linear attention expert is responsible for modeling item interactions
from the user. By combining these two powerful expert modules,
our GLINT-RU is capable of adaptively learning both temporal
and semantic item features from the sequence, which performs
fine-grained modeling of complex user behaviors.

After the user-item interactions are selectively learned bymixing
block, the item scores are conveyed to the gatedMLP block, where
the information is filtered according to the data environment. The
framework employs various gates in appropriate positions to deeply
filter information, improving the model’s flexibility and the ability
to perceive and select information.

3.2 Item Embedding Layer
For sequential recommendation tasks, information on items inter-
acted by users should be encoded to tensors through the embed-
ding layer [38]. We denote the length of input user-item interac-
tions as 𝑁 , and embedding size as 𝑑 . For a interaction sequence
𝑠𝑖 = [𝑣1, 𝑣2, . . . , 𝑣𝑛, . . . 𝑣𝑛𝑖], the 𝑛-th item 𝑣𝑛 ∈ R𝐷𝑛 can be projected
into the representation 𝒆𝑛 by the following formulation:

𝒆𝑛 =𝑾𝑛𝑣𝑛, (3)

where𝑾𝑛 ∈ R𝑑×𝐷𝑛 is trainable weighted matrix. The embedding
layer outputs the encoded item sequence in a tensor:

𝑬 = [𝒆1, 𝒆2, · · · , 𝒆𝑁]T . (4)

In traditional transformer-based models, positional embeddings
are typically necessary because the attention mechanism lacks the
inherent capability to encode temporal information [12]. Uniquely,
in this paper we employ the GRU module to model temporal item
dependencies, which generates fine-grained representations with
positional information for the items. Therefore, we decide not to
add the positional embedding layer into the framework.

3.3 Dense Selective GRU
Existing GRU cell learns sequential data by conveying information
from preceding cells. Although this mechanism has the superior-
ity of capturing the long-term dependencies in the sequence, it
predominantly focuses on information from previous items, while
potentially overlooking the valuable context information provided
by adjacent items, which are often closely related in real-world
applications. To address these challenges, we introduce dense selec-
tive GRU shown in Figure 1.(b) as the core component of GLINT-TU.
This innovation extracts local temporal features and generates fine-
grained positional information using the update mechanism in GRU
module. By implementing dense selective GRU, the computational
complexity can be further reduced, and the recommendation accu-
racy of the GRU-based framework can be substantially improved.

3.3.1 Dense GRU module. Therefore, to enable each GRU cell
to aggregate local temporal features of user behavior, we introduce
a temporal convolution layer , where adjacent item information is
adaptively fused before being fed into the GRU module:

𝑪 = TemporalConv1d(𝑿𝑾0 + 𝒃0) (5)

where 𝑿 = [𝑥1, 𝑥2, . . . , 𝒙𝑁]T is the input tensor with 𝑑 feature
dimensions, and 𝑪 = [𝒄1, 𝒄2, . . . , 𝒄𝑁]T is the output of the convo-
lution operation TemporalConv1d(·) with 𝑁 steps.𝑾0 and 𝒃0 are
weight matrix and bias, respectively. The size of the convolution ker-
nel is set as 𝑘 . According to Eq.(1), the output of the GRUCell(·) can
be divided into a latent item representation 𝒉̂𝑛 and a fine-grained
positional representation 𝒑𝑛 learned by historical hidden states:

𝒉𝑛 = GRUCell(𝒄𝑛,𝒉𝑛−1) = 𝒉̂𝑛 + 𝒑𝑛

𝒉̂𝑛 = (1 − 𝒛𝑡)𝒉̃𝑛 +
𝑛∏
𝑖=1

𝒛𝑖𝒉0, 𝒑𝑛 =

𝑛−2∑︁
𝑘=1

𝑛∏
𝑖=𝑘+1

𝒛𝑖 (1 − 𝒛𝑘)𝒉𝑘
(6)

where 𝒛𝑘 is the reset gate at the 𝑘-th time step. It is noteworthy
that each positional representation 𝒑𝑛 is generated by aggregated
historical hidden states with varied update intensities. Then we

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sheng Zhang, et al.

Figure 1: (a). Framework of proposed GLINT-RU. (b). Expert mixing block employs paralleled attention and GRU to effectively
learn semantic features and fine-grained positional information. (c). Dense Selective GRU as the core part of the framework,
deeply selects and aggregates the hidden states. (d). Gated MLP block is utilized to deeply filter the feed forward network.

project the hidden states into a latent space using the channel
crossing layer, which can be written as:

Φ(𝑯) = 𝑯𝑾𝐻 + 𝒃𝐻 , (7)

where 𝑯 = [𝒉1,𝒉2, . . . ,𝒉𝑁]T is the output of GRU, 𝑾𝐻 is the
learnable weight matrix and 𝑏𝐻 are bias. Although each input state
𝒄𝑡 incorporates information from both preceding and subsequent
items, each output hidden state is still determined by the hidden
state of the preceding time step. Therefore, to capture the context
information of the output sequential hidden states, we implement
a temporal convolution on the crossed features. This convolution
layer extracts local temporal features to understand user behavior
dynamics, and enhance the predictive accuracy of our model:

𝒀 = TemporalConv1d(G) (8)

where G is the Selective Gate function, and 𝒀 = [𝒚1,𝒚2, . . . ,𝒚𝑁]T
is the output matrix from the dense selective GRU module. The two
convolution layers together with GRU cells improve the density of
the sequential information, enabling each hidden state to be learned
from behaviors of more input time steps.

3.3.2 Selective Gate. To filter the hidden information of the GRU
module, we design a selective gate where outputs of the feature
crossing layer are selected based on the input state of the GRU.
The selective gate weights are generated by two tiny linear layers
with SiLU activation function [5], and we use them to select useful
hidden states and filter information:

𝜹1 (𝑪) = 𝑪𝑾 (1)
𝛿

+ 𝑏 (1)
𝛿

,

G(𝑯) = 𝛀(𝜹1 (𝑪),𝑯) = (SiLU(𝜹1 (𝑪))𝑾 (1)
Ω + 𝒃 (1)Ω) ⊗ Φ(𝑯),

(9)

where 𝑪 = [𝒄1, 𝒄2, . . . , 𝒄𝑁]T also serves as the input of the GRU
module,𝑾 (1)

𝛿
,𝑾 (1)

Ω are weight matrices, 𝒃 (1)
𝛿

, 𝒃 (1)Ω are bias. With
this gate mechanism, our GRU-based model could become more
flexible with the ability to perceive the data environment.

Figure 2: General process of expert mixing mechanism.
GRU captures long-term dependencies with recurrent latent
and fine-grained positional representations. Attention layer
learns semantic features fro important item interactions.

3.4 Expert Mixing Block
Existing efficient SRSs lack the ability to exploit semantic features,
fine-grained positional information, and dependencies simultane-
ously. As is shown in Figure 1.(c), by introducing the linear attention
mechanism and mixing these two powerful experts, the compu-
tational complexity will be substantially reduced compared with
transformer-based models, and more high-quality item representa-
tions can be generated. Moreover, the two employed experts are
parallel in our framework, which further improves the model’s
efficiency. The expert mixing mechanism is shown in Figure 2.

In real applications, the conditions of the data vary a lot. The GRU
is naturally suited for sequential data, demonstrating effectiveness
in sequential recommendation tasks that exhibit strong temporal
dependencies, while attention focuses on relevant items in the
sequence dynamically. To adapt to complex data conditions, we

GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada

attribute appropriate weights to the two experts by a mixing gate:

𝑴 = 𝛼
(𝑡)
1 𝑨′ (𝑸,𝑲 , 𝑽) + 𝛼

(𝑡)
2 𝒀 ,

𝛼
(𝑡)
𝑖

= softmax(𝛼 (𝑡−1)
𝑖

) =
𝛼
(𝑡−1)
𝑖

𝑒𝛼
(𝑡−1)
1 + 𝑒𝛼

(𝑡−1)
2

, 𝑖 = 1, 2,
(10)

where 𝛼 (𝑡)
1 , 𝛼

(𝑡)
2 are trainable mixing parameters at 𝑡-th training

iteration. Then we filter this output by introducing another data-
aware gate which selects the outputs based on the original input
data batch:

𝜹2 (𝑿) = 𝑿𝑾 (2)
𝛿

+ 𝑏 (2)
𝛿

,

𝒁 = 𝛀2 (𝜹2 (𝑿),𝑴) = (GeLU(𝜹2 (𝑿))) ⊗ 𝑴,
(11)

where 𝑿 is the input of expert mixing block,𝑾 (2)
𝛿

is the weight

matrix of linear layer, 𝒃 (2)
𝛿

are bias.

3.5 Gated MLP Block
Most existing efficient SRSs, utilize two-layer feed forward net-
works to capture the nonlinear relationships among features be-
fore giving predictions. To further enhance the performance of the
model and augment useful features from the expert mixing block,
we introduce the gated MLP block shown in Figure 1.(d), which
employs a gate mechanism again to deeply filter the information
and generate item representations for predictions.

𝜹3 (𝒁) = 𝒁𝑾 (3)
𝛿

+ 𝑏 (3)
𝛿

,

𝑷 = 𝛀2 (𝜹3 (𝒁),𝒁) = (GeLU(𝜹3 (𝒁))) ⊗ (𝒁𝑾 + 𝒃),
𝑹 = 𝑷𝑾𝑜 + 𝒃𝑜

(12)

where 𝒁 is the output of expert mixing block, 𝑷 denotes the out-
put of gated linear layer, 𝑹 represents the item representation,
and𝑾 (3)

𝛿
,𝑾𝑜 ,𝑾 are weight matrices, 𝒃 (3)

𝛿
, 𝒃𝑜 , 𝒃 are bias. The rec-

ommendation scores are generated by item representations and
embeddings, followed by the prediction score 𝑦𝑖 of the 𝑖-th item:

𝑦𝑖 = softmax(𝑹𝑖 (𝒆𝑖)T), (13)

where 𝑹𝑖 is the representation of 𝑖-th item. Loss function, model
training methods and the algorithm are displayed in Appendix A.

3.6 Complexity Analysis
In this subsection, we will explain why GLINT-RU has inherent
superiority over other popular SRS models in model efficiency.

Given that the sequence length is 𝑁 , the embedding size is 𝑑 and
the kernel size for GLINT-RU is 𝑘 , the time complexity of GLINT-
RU is O((2𝑘 + 12)𝑁𝑑2). The complexity is calculated throughout
the network, from the embedding layer to the prediction layer.
Discussion. Our GLINT-RU shows significantly low and linear
time complexity, as GLINT-RU is a highly paralleled mixed network
with only one layer to achieve high performance. Our framework
utilizes paralleled expert networks and employs an efficient GRU
module to capture long-term dependencies. GLINT-RU is more
efficient than other models in the following aspects:
• GLINT-RU v.s. Transformer-based SRSs: Firstly, traditional
transformer-based model [12] suffers from large computational
complexity, especially when the sequence length 𝑁 is large. Lin-
ear attention mechanism [18] can be applied to substantially

reduce the computational cost. However, they still require stacked
transformer structures to achieve high performance, while GLINT-
RU achieves outstanding performance with only one layer.

• GLINT-RUv.s.MLP-based SRSs: Secondly, The inference speed
of the MLP-based models [7] may decrease when faced with long
sequence length, as the sequence mixing layer has quadratic
time complexity. In contrast, the paralleled expert module of
GLINT-RU is more suitable for processing long sequential data.

• GLINT-RU v.s. SSM-based SRSs: Thirdly, state-space mod-
els [9] may require complex matrix operations and recursive
calculations, which may be difficult to parallelize efficiently in
practical calculations. In contrast, GLINT-RU’s paralleled expert
module has a simpler update mechanism and higher efficiency.

4 Experiments
In this section, we conduct extensive experiments to show the
effectiveness and efficiency of our GLINT-RU Framework. After
we introduce our implementation details, the experiment results
will be analyzed in detail. The experiments in this section are set
to answer the following research questions:
• RQ1: How does GLINT-RU framework perform compared with
other state-of-the-art SRS baseline models?

• RQ2: To what extent does GLINT-RU improve model efficiency
compared with other state-of-the-art SRS frameworks?

• RQ3:How do the dense selective GRU, the linear attention mech-
anism, and the gated MLP contribute to GLINT-RU?

• RQ4: How does the hyperparameter setting affect the perfor-
mance of GLINT-RU?

4.1 Datasets and Evaluation Metrics
We evaluate GLINT-RU based on three benchmark datasets ML-
1M 2, Amazon-Beauty and Amazon video Games 3. Below is the
basic introduction of MovieLens-1M, Amazon Beau-ty, and Amazon
Video Games datasets.
• MovieLens 1M: comprises user ratings of movies. It includes
about 1 million anonymous ratings from users who joined Movie-
Lens. The dataset provides information about user IDs, movie
IDs, ratings, and timestamps. It is widely used for research in
collaborative filtering and recommendation systems.

• Amazon Beauty: is a subset of the Amazon product data, fo-
cusing specifically on beauty products. It includes user reviews
and ratings of various beauty products available on Amazon.
The dataset contains metadata such as product descriptions, cat-
egories, prices, and brand information. It is valuable for research
in sentiment analysis, product recommendations, and consumer
behavior analysis within the beauty industry.

• Amazon Video Games: is a subset of the Amazon product data,
focusing specifically on video game products. It includes user
reviews and ratings of various video game products available
on Amazon. The dataset contains metadata such as product de-
scriptions, categories, price, and platform information. It is also
valuable for research in sentiment analysis, product recommenda-
tion, and consumer behavior analysis in the video games domain.

2https://grouplens.org/datasets/movielens/
3https://cseweb.ucsd.edu/ jmcauley/datasets.html#amazon_reviews

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sheng Zhang, et al.

Table 1: Statistical Information of Adopted Datasets.

Datasets # Users # Items # Interactions Avg.Length Sparsity

ML-1M 6,041 3,707 1,000,209 165.60 95.53%
Beauty 22,364 12,102 198,502 8.88 99.93%

Video Games 24,304 10,673 231,780 9.54 99.91%

Statistical information of the three datasets is shown in Table 1,
where all the three datasets are sparse. The two Amazon datasets
have relatively small data volumes, about 200,000, but they have
a large number of users and items, and the average length of in-
teraction sequences is short. In contrast, ML-1M has a larger data
volume, reaching 1 million, but the number of users and items is
small, with much longer interaction sequence lengths.

We adopt Recall, Mean Reciprocal Rank (MRR), and Normalized
Discounted Cumulative Gain (NDCG) as the evaluation metrics for
our experiments. The interactions are grouped by users chronolog-
ically, and the datasets are split by the leave-one-out strategy [18].
To be more specific, the penultimate item of the interaction se-
quence is used for validation. Therefore, the size of validation set
is determined by the number of users.

4.2 Baselines
In this paper, we compare our GLINT-RU with two types of baseline
models, i.e., traditional SRS models and efficient SRS models. The
traditional SRS model includes various SRS benchmarks, while
the efficient SRS models improve existing model’s structure and
computational methods, thus significantly enhancing the model
efficiency. Adopted baselines are listed as follows:
Traditonal SRS models
(1) GRU4Rec [10]: utilizes GRUs to capture sequential dependen-
cies within user interactions for session-based recommendations.
(2) BERT4Rec [26]: adapts the Bidirectional Encoder Representa-
tions from Transformers (BERT) architecture to model user behav-
iors for personalized recommendation.
(3) SASRec [12]: captures long-term and short-term user prefer-
ences by applying a multi-head attention mechanism.
Efficient SRS Models
(1) LinRec [18]: reduces the computational costs substantially by
changing the dot product of attentionmechanism in the transformer-
based models. We select SASRec as the backbone of LinRec.
(2) SMLP4Rec [7] uses a tri-directional fusion scheme to learn cor-
relations on sequence, channel, and feature dimensions efficiently.
(3) LightSAN [6] projects the initial interactions into representa-
tions with shorter lengths, which is also an efficient approach for
transformer-based models.
(4)Mamba4Rec [17]: explores the potential of selective SSMs for
efficient sequential recommendation, which substantially improve
the efficiency of SRS models.

4.3 Implementation
In this subsection, we introduce the implementation details of the
GLINT-RU. We use Adam optimizer [13] with the learning rate of
0.001 for our training process. Both the train and evaluation batch
size are set as 2048. The hidden size is set as 128 for ML-1M and 64
for Amazon Beauty and Video Games. As is shown in Table 1, the
average length of ML-1M, Beauty, and Video Games are 165, 8.88,

and 9.54, so we set the maximum sequence length as 200 for ML-1M,
and 100 for the two amazon datasets. We adopt the dropout rate
of 0.5 for Amazon datasets considering their high level of sparsity,
compared with 0.2 for ML-1M. We construct the attention-based
baselines with 2 transformer layers so that they can achieve high
performance. Other implementation details follow the settings of
original papers [7, 17, 18]. Please find the complete hyperparameter
settings and more implementation details in Appendix B.

4.4 Overall Performance (RQ1)
In this subsection, we compare the performance of GLINT-RU with
both traditional recommendation frameworks and state-of-the-art
efficient models. The results, as shown in Table 2, demonstrate the
effectiveness of GLINT-RU on metrics Recall@10, MRR@10, and
NDCG@10 in bold. According to the above table, it is evident that
GLINT-RU defeats all the selected transformer-, RNN-, MLP-, and
SSM-based baselines. We improve the performance upper bound of
efficient recommendation models by 0.34% ∼ 3.74%.

Traditional RNN-based models, like GRU4Rec, might have dif-
ficulty in dealing with complex user behaviors. Although it can
capture the long-term dependencies from long sequences, it strug-
gles to learn effectively from extremely sparse datasets. Traditional
attention-based methods like BERT4Rec and SASRec have great
performance on the three datasets, but it is quite inefficient due to
the high computational complexity of the attention mechanism.

Efficient model LinRec changes the softmax operation, and takes
attention scores from more positions into consideration, improving
the performance on long-term sequential recommendation tasks
compared with its backbone SASRec. SMLP4Rec and Mamba4Rec
achieve impressive performance on the three datasets. However,
Mamba4Rec shows enhanced proficiency in modeling long se-
quences (ML-1M) but exhibits low performance in relatively short
sequences (Beauty and Video Games). Conversely, the SMLP4Rec
shows superior performance in tasks with short sequences while be-
ing less effective with longer sequences. Additionally, SMLP4Rec re-
quires features from the items to enhance its performance. Uniquely,
GLINT-RU integrates the advantages of a linear attention mecha-
nism and dense selective GRU module, adaptively extracting de-
pendencies from recurrent latent item representations, fine-grained
positional representations, and important semantic features. The
gate mechanism employed in GLINT-RU substantially enhances its
ability to filter the information based on the dynamic data environ-
ment and mix the experts according to the data adaptively.

In summary, GLINT-RU as a novel efficient framework, shows
its superiority over state-of-the-art baselines. This underscores the
potential of dense selective GRU and models with hybrid modules
as more powerful tools for recommendation tasks.

4.5 Efficiency Comparison (RQ2)
In this subsection, we analyze the efficiency of GLINT-RU and state-
of-the-art sequential recommendation models. We evaluate the
model efficiency according to the inference time of each mini-batch,
training time, and GPU memory occupation.

The results, shown in Table 3, provide several valuable insights:
Firstly, by utilizing the efficient Dense GRU module and linear
attention module, GLINT-RU dramatically reduces the training

GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 2: Overall performance comparison between GLINT-RU and baselines.

Models ML-1M Amazon Beauty Amazon Video Games
Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10

GRU4Rec 0.6954 0.4055 0.4748 0.3851 0.1891 0.2351 0.6028 0.2929 0.3660
BERT4Rec 0.7119 0.4041 0.4776 0.3478 0.1584 0.2027 0.5490 0.2541 0.2916
SASRec 0.7205 0.4251 0.4958 0.4332 0.2325 0.2798 0.6459 0.3404 0.4128
LinRec 0.7184 0.4316 0.5002 0.4270 0.2314 0.2775 0.6384 0.3355 0.4073

LightSANs 0.7195 0.4314 0.5003 0.4406 0.2358 0.2840 0.6488 0.3415 0.4142
SMLP4Rec 0.6753 0.3870 0.4558 0.4457 0.2408 0.2891 0.6480 0.3484 0.4195
Mamba4Rec 0.7238 0.4368 0.5054 0.4233 0.2213 0.2689 0.6488 0.3389 0.4123
GLINT-RU 0.7379∗ 0.4517∗ 0.5202∗ 0.4472∗ 0.2498∗ 0.2964∗ 0.6573∗ 0.3549∗ 0.4266∗

Improv. 1.95% 3.30% 2.93% 0.34% 3.74% 2.53% 1.31% 1.87% 1.69%

Recommendation performance of GLINT-RU and existing state-of-the-art benchmark SRS models have been shown. “ ∗ ” indicates the improvements are
statistically significant (i.e., two-sided t-test with 𝑝 < 0.05) over baselines). The best results are bolded, and the second-best are underlined.

Table 3: Efficiency comparison.

Datasets Model Infer. Training GPU Memory

ML-1M

BERT4Rec 88ms 285s/epoch 21.51GB
SASRec 55ms 172s/epoch 21.51GB
LinRec 37ms 101s/epoch 11.67GB

LightSANs 43ms 130s/epoch 16.99GB
SMLP4Rec 51ms 151s/epoch 16.13GB
Mamba4Rec 41ms 108s/epoch 7.72G
GLINT-RU 31ms 86s/epoch 8.81G
Improv. 16.22% 17.44% -

Beauty

BERT4Rec 1372ms 13s/epoch 11.69GB
SASRec 444ms 8.1s/epoch 7.67GB
LinRec 340ms 5.6s/epoch 4.14GB

LightSANs 427ms 7.2s/epoch 4.57GB
SMLP4Rec 361ms 5.3s/epoch 2.95GB
Mamba4Rec 351ms 4.5s/epoch 2.32G
GLINT-RU 278ms 3.8s/epoch 2.62G
Improv. 18.24% 15.56% -

Video Games

BERT4Rec 1290ms 15s/epoch 10.98GB
SASRec 406ms 9.6s/epoch 7.65GB
LinRec 327ms 6.6s/epoch 4.13GB

LightSANs 369ms 8.3s/epoch 4.55GB
SMLP4Rec 389ms 9.1s/epoch 3.38GB
Mamba4Rec 309ms 5.6s/epoch 2.28G
GLINT-RU 247ms 4.5s/epoch 2.49G
Improv. 20.06% 19.64% -

Inference time of each mini-batch (batch size = 2048), training time and
GPU memory of GLINT-RU and other baseline models. The best results

are bolded, and the second best results are underlined.

time and inference time, improving the training inference time by
15% ∼ 20% compared with most efficient recommendation baseline
models. In addition, due to the low computational cost of GRU
and linear attention mechanism, GLINT-RU exhibits minimal GPU
memory consumption, which is comparable to the state-of-the-art
SSM-based efficient model Mamba4Rec. In Section 3.6, we demon-
strate that the GLINT-RU exhibits low theoretical computational

Table 4: Ablation study for Components of GLINT-RU.

Model Components Recall@10 MRR@10 NDCG@10

Default 0.7379∗ 0.4517∗ 0.5202∗

w/o Gated MLP (Light GLINT-RU) 0.7260 0.4369 0.5060
w/o Attention 0.7195 0.4312 0.5001

w/o GRU 0.6762 0.3913 0.4593
w/o Temporal Conv1d 0.7232 0.4322 0.5019

“ ∗ ” indicates the improvements are statistically significant (i.e.,
two-sided t-test with 𝑝 < 0.05) over baselines)

complexity, as we employ the parallel networks and efficient GRU
as core components of our recommender system. The theoretical
analysis has been verified by the results in Table 3.

Traditional transformer-based recommendation models like SAS-
Rec and BERT4Rec suffer from extended inference time and high
GPU memory occupation. When processing long sequential data,
the conventional attention mechanism falls behind novel efficient
models due to its high computational cost. Among all the baseline
models, the SSM-based Mamba4Rec framework exhibits impressive
efficiency, but Mamba requires complex mathematical computation,
which slows down its inference and training speed. Additionally,
LinRec suffers from the inherent shortage of its backbone SAS-
Rec that requires stacked transformer layers to enhance the model
performance. Such large transformer structures extend both the
inference and training time. Although SMLP4Rec achieves high per-
formance in the model accuracy, it struggles to train and inference
efficiently, especially when processing long-term sequential data.

4.6 Ablation Study (RQ3)
In the ablation study, we remove the gated MLP block, linear at-
tention expert, dense selective GRU expert, and the two temporal
convolution layers individually to verify the efficacy of each compo-
nent. We conduct the ablation study on the ML-1M dataset, and the
results are outlined in Table 4, providing insightful observations.

The results verify the essential role of the dense selective GRU
module, as the performance of the model will dramatically decrease

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sheng Zhang, et al.

1 3 5 7 9 11
Kernel Size k

0.420

0.435

0.450

0.465

R
ec

al
l@

10

(a). Recall@10 with Different k
GLINT-RU
Mamba4Rec

1 3 5 7 9 11
Kernel Size k

0.225

0.240

0.255

0.270

M
R

R
@

10

(b). MRR@10 with Different k
GLINT-RU
Mamba4Rec

1 3 5 7 9 11
Kernel Size k

0.270

0.285

0.300

0.315

N
D

C
G

@
10

(c). NDCG@10 with Different k
GLINT-RU
Mamba4Rec

1 3 5 7 9 11
Kernel Size k

2.1

2.4

2.7

G
PU

 M
em

or
y

(G
B

)

2.51 2.52
2.62 2.63

2.72 2.72
(d). GPU Mempory with Different k

Figure 3: Impacts of kernel size 𝑘 of the temporal convolution
on the performance of GLINT-RU and Mamba4Rec and the
GPU Memory occupation of GLINT-RU.

without the GRU module. This reveals the insights that the gated
GRU module effectively captures the dependencies of interactions
with fine-grained positional representations. The linear attention
mechanism understands the interactions of relevant items in the
sequence. As is shown in Table 4, it improves the performance of
GLINT-RU to some extent. Adding a temporal convolution layer
incorporates context information from adjacent items, resulting
in an enhancement in model performance. In addition, the gated
MLP block plays a similar role as the feed-forward network in
our framework, which filters complex information from the expert
mixing block. It is noteworthy that even without the gated MLP
block our framework still outperforms all the state-of-the art effi-
cient models, demonstrating its inherent remarkable superiority
for sequential recommendation tasks. After we remove the gated
MLP, the GPU memory occupation of GLINT-RU becomes 7.63GB,
less than Mamba4Rec shown in Table 3, and the inference time
will be reduced to 241ms. We name this framework “Light GLINT-
RU”, which is more applicable to resource-constrained scenarios.
We further discuss the ablation study on activation functions in
Appendix C, where we highlight their impact on performance. Ad-
ditionally, we provide a detailed analysis of the ablation study con-
ducted on the Amazon Beauty and Amazon Video Games datasets
in Appendix E, emphasizing the contributions of each component
to the overall performance of GLINT-RU.

4.7 Parameter Analysis
We conduct parameter analysis on the dataset Amazon Beauty.
We will first analyze the impact of the crucial hyperparameter
kernel size 𝑘 in GLINT-RU, and then we will analyze the model
performance as the hidden size 𝑑 and number of GLINT-RU layers
𝐿 changes. The discussion on these parameters provides valuable
insights into the superiority of GLINT-RU.
Kernel size 𝑘 . The impacts of the parameter 𝑘 on the model per-
formance are shown in Figure 3 and 4. Figure 3.(a)-(c) displays
the model performance of GLINT-RU with different kernel sizes.

1 3 5 7 9 11
Kernel Size k

0

1

2

3

4

5

Ti
m

e
(s

)

Training and Inference Time with Different Kernel Sizes
Training Time (s/epoch)
Inference Time (s)

Figure 4: Impacts of kernel size 𝑘 of the temporal convolution
on the training and inference time.

Our model exhibits stable and high performance, providing a wide
range of kernel sizes. This finding indicates the robustness of the
GLINT-RU framework. This enhancement in performance can be
attributed to the fact that a larger kernel size aggregates informa-
tion from more items, thereby learning a more extensive context
into the hidden state. However, as the kernel size continues to ex-
pand, dense selective GRU might incorporate irrelevant data into
the output state, which might lead to a marginal decline in the
accuracy. Mamba4Rec as a novel efficient SSM-based model, also
employs a temporal convolution layer in the model structure. As
the kernel size changes, the performance of Mamba4Rec becomes
quite unstable compared with our GLINT-RU. Our GLINT-RU con-
sistently outperforms Mamba4Rec across all kernel sizes, further
demonstrating the superiority of this novel GLINT-RU framework.

As can be seen in the hist plots in Figure 3.(d) and Figure 4, in-
creasing the kernel size has slight impacts on the training/inference
time of each mini-batch and the GPU memory occupation, which
further verifies the efficiency and stability of our model.
Hidden size 𝑑 .We change the model size by using different hidden
sizes 𝑑 and compare the performance of GLINT-RU with state-of-
the-art baselines. The results shown in Figure 5.(a)-(c) indicate that
GLINT-RU achieves state-of-the-art performance at small hidden
sizes. When 𝑑 is set as 64, the predictive efficacy of the GLINT-RU
substantially surpasses the upper bounds of performance achieved
by other baseline models. Achieving excellent results with a rela-
tively small model dimension illustrates the superior expressiveness
and significant advantages of the GLINT-RU. SMLP4Rec requires
additional features to enhance the model accuracy, and its inference
speed is significantly affected by the variation in the hidden size,
demonstrating relatively low efficiency. The prediction accuracy of
Mamba4Rec is inferior and decreases dramatically as the hidden
size 𝑑 gets larger, indicating that it struggles to learn effective in-
formation from short behavior sequences. Attention-based models
SASRec, LightSAN, and LinRec show more stable results, but they
can only capture item interactions to predict the ratings and require
stacked transformers to achieve relatively high performance, which
has negative impacts on model efficiency in Figure 5.(d).
Number of Layers 𝐿.We increase the number of GLINT-RU layers
from 1 to 4 and observe the model performance and efficiency. The
results and the experimental details are illustrated in Appendix D.

GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada

32 64 96 128
Hidden Size d

0.40

0.42

0.44

0.46

R
ec

al
l@

10

(a). Recall@10 with Different d

32 64 96 128
Hidden Size d

0.21

0.22

0.23

0.24

0.25

M
R

R
@

10

(b). MRR@10 with Different d

32 64 96 128
Hidden Size d

0.26

0.27

0.28

0.29

0.30

N
D

C
G

@
10

(c). NDCG@10 with Different d

32 64 96 128
Hidden Size d

0.24

0.32

0.40

0.48

In
fe

re
ce

 T
im

e
(s

)

(d). Inference Time with Different d
LinRec
Mamba4Rec
SASRec
LightSAN
SMLP4Rec
GLINT-RU

Figure 5: Impacts of hidden size 𝑑 on the performance of GLINT-RU and state-of-the-art baselines.

The results indicate that our single-layer GLINT-RU can achieve
high model efficiency and accuracy simultaneously.

In summary, GLINT-RU effectively combines the long/short-term
dependencies with effective positional representations and impor-
tant interactions which enables it to be an accurate and efficient
SRS under a broad range of parameter choices.

5 Related Works
Traditional Sequential Recommendation Models Transform-
ers and RNNs are widely recognized as popular and effective frame-
works for sequential recommendation tasks. Numerous studies
have been conducted to explore the potential of transformers in
enhancing recommendation performance. The transformer-based
SASRec [12] predicts user preferences by leveraging multi-head
attention to model both long- and short-term interactions. SSE-
PT [30] further improves recommendation accuracy by incorpo-
rating user embeddings into the transformer architecture. Simi-
larly, MB-STR [32], a transformer-based variant, captures diverse
user behavior dynamics and effectively mitigates the challenges
posed by data sparsity. On the other hand, RNN-based methods like
GRU4Rec [10] model dependencies among items through gated re-
current units, enabling them to learn sequential patterns. HRNN [23],
an advanced RNN-based framework, integrates an additional GRU
layer to extract session-level information and dynamically track
user preferences over time. In comparison to these models, GLINT-
RU demonstrates superior capability in capturing high-quality se-
mantic features and fine-grained positional representations, leading
to improved model accuracy and performance.
Efficient Recommendation Models To tackle the high compu-
tational complexity of existing SRSs, and accelerate the inference
speed for real-world applications, researchers endeavor to invent
increasingly efficient models. AutoSeqRec [19] is constructed based
on Autoencoder, which is an innovative work that captures long-
term preferences through collaborative filtering. To further improve
the model efficiency, DMAN [27] combines the long-term attention
net and recurrent attention net to memorize users’ interests dynam-
ically and support efficient inference. LinRec [18] cuts down the
computational cost of transformer-based backbones by changing
the dot product in the attention mechanism. SSM-based models
like Mamba4Rec [17] and RecMamba [31] utilize selective state
space models to achieve high performances and high efficiency,
becoming emerging powerful tools for sequential recommenda-
tion tasks. FMLP-Rec [39] with learnable filters and SMLP4Rec [7]
with diverse mixers are representative pure MLP-based efficient
SRSs. LRURec [33] is constructed based on linear recurrent units

and achieves fast inference by employing recursive parallelization.
These models often require stacked network structures to achieve
better results, and their performance is not stable enough when
faced with different sequence lengths. However, GLINT-RU only
needs one layer to achieve stable high performance.

6 Conclusion
In this paper, we have presented an innovative dense selective GRU
framework, GLINT-RU for sequential recommendation tasks. Due
to the paralleled network design and implementation of efficient
dense selective GRU with linear complexity, the computational cost
can be substantially reduced, resulting in state-of-the-art inference
speed. Additionally, our GLINT-RU models improve the quality
of semantic features and fine-grained positional information for
recommendation tasks. Gate mechanisms are widely applied in
GLINT-RU, deeply filtering and selecting information. It uses a
dense selective GRU that aggregates information from adjacent
items and generates high-quality latent item representations based
on dependencies with fine-grained positional information to learn
context information. By mixing dense selective GRU with linear
attention, GLINT-RU can capture important interactions and item
dependencies simultaneously. Our extensive experiments demon-
strate that GLINT-RU achieves outstanding performance, not only
improving model accuracy but also accelerating training and in-
ference speed dramatically. These results underscore GLINT-RU’s
potential to become a novel, stable, and efficient framework in
various scenarios. As an efficient recommender system that de-
feats state-of-the-art models, we believe our novel framework will
become a valuable foundation.

Acknoledgement
This research was partially supported by Research Impact Fund
(No.R1015-23), APRC - CityU New Research Initiatives (No.9610565,
Start-up Grant for New Faculty of CityU), CityU - HKIDS Early
Career Research Grant (No.9360163), Hong Kong ITC Innovation
and Technology Fund Midstream Research Programme for Univer-
sities Project (No.ITS/034/22MS), Hong Kong Environmental and
Conservation Fund (No. 88/2022), and SIRG - CityU Strategic Inter-
disciplinary Research Grant (No.7020046), Collaborative Research
Fund (No.C1043-24GF), Huawei (Huawei Innovation Research Pro-
gram), Tencent (CCF-Tencent Open Fund, Tencent Rhino-Bird Fo-
cused Research Program), Ant Group (CCF-Ant Research Fund,
Ant Group Research Fund), Alibaba (CCF-Alimama Tech Kangaroo
Fund No. 2024002), CCF-BaiChuan-Ebtech Foundation Model Fund,
and Kuaishou.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sheng Zhang, et al.

References
[1] Jianxin Chang, Chenbin Zhang, Yiqun Hui, Dewei Leng, Yanan Niu, Yang Song,

and Kun Gai. 2023. Pepnet: Parameter and embedding personalized network for
infusing with personalized prior information. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 3795–3804.

[2] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[3] Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George
Cristian-Muraru, Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivat-
san Srinivasan, et al. 2024. Griffin: Mixing Gated Linear Recurrences with Local
Attention for Efficient Language Models. arXiv preprint arXiv:2402.19427 (2024).

[4] Rahul Dey and Fathi M Salem. 2017. Gate-variants of gated recurrent unit (GRU)
neural networks. In 2017 IEEE 60th international midwest symposium on circuits
and systems (MWSCAS). IEEE, 1597–1600.

[5] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning. Neural
networks 107 (2018), 3–11.

[6] Xinyan Fan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong
Wen. 2021. Lighter and better: low-rank decomposed self-attention networks for
next-item recommendation. In Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval. 1733–1737.

[7] Jingtong Gao, Xiangyu Zhao, Muyang Li, Minghao Zhao, Runze Wu, Ruocheng
Guo, Yiding Liu, and Dawei Yin. 2024. SMLP4Rec: An Efficient all-MLP Architec-
ture for Sequential Recommendations. ACM Transactions on Information Systems
42, 3 (2024), 1–23.

[8] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 249–256.

[9] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with
selective state spaces. arXiv preprint arXiv:2312.00752 (2023).

[10] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[11] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991.
Adaptive mixtures of local experts. Neural computation 3, 1 (1991), 79–87.

[12] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[14] Chengxi Li, Yejing Wang, Qidong Liu, Xiangyu Zhao, Wanyu Wang, Yiqi Wang,
Lixin Zou, Wenqi Fan, and Qing Li. 2023. STRec: Sparse Transformer for Sequen-
tial Recommendations. In Proceedings of the 17th ACMConference on Recommender
Systems. 101–111.

[15] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. 1419–1428.

[16] Muyang Li, Xiangyu Zhao, Chuan Lyu, Minghao Zhao, Runze Wu, and Ruocheng
Guo. 2022. MLP4Rec: A pure MLP architecture for sequential recommendations.
arXiv preprint arXiv:2204.11510 (2022).

[17] Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, and James Caverlee.
2024. Mamba4Rec: Towards Efficient Sequential Recommendation with Selective
State Space Models. arXiv preprint arXiv:2403.03900 (2024).

[18] Langming Liu, Liu Cai, Chi Zhang, Xiangyu Zhao, Jingtong Gao, Wanyu Wang,
Yifu Lv, Wenqi Fan, Yiqi Wang, Ming He, et al. 2023. Linrec: Linear attention
mechanism for long-term sequential recommender systems. In Proceedings of
the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 289–299.

[19] Sijia Liu, Jiahao Liu, Hansu Gu, Dongsheng Li, Tun Lu, Peng Zhang, and Ning
Gu. 2023. Autoseqrec: Autoencoder for efficient sequential recommendation.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. 1493–1502.

[20] Ziwei Liu, Qidong Liu, Yejing Wang, Wanyu Wang, Pengyue Jia, Maolin Wang,
Zitao Liu, Yi Chang, and Xiangyu Zhao. 2024. Bidirectional gated mamba for
sequential recommendation. arXiv preprint arXiv:2408.11451 (2024).

[21] Chao Long, Huanhuan Yuan, Junhua Fang, Xuefeng Xian, Guanfeng Liu, Victor S
Sheng, and Pengpeng Zhao. 2024. Learning Global and Multi-granularity Local
Representation with MLP for Sequential Recommendation. ACM Transactions on
Knowledge Discovery from Data 18, 4 (2024), 1–15.

[22] Saeed Masoudnia and Reza Ebrahimpour. 2014. Mixture of experts: a literature
survey. Artificial Intelligence Review 42 (2014), 275–293.

[23] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.
2017. Personalizing session-based recommendations with hierarchical recurrent
neural networks. In proceedings of the Eleventh ACM Conference on Recommender
Systems. 130–137.

[24] Guizhu Shen, Qingping Tan, Haoyu Zhang, Ping Zeng, and Jianjun Xu. 2018. Deep
learning with gated recurrent unit networks for financial sequence predictions.
Procedia computer science 131 (2018), 895–903.

[25] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li.
2021. Efficient attention: Attention with linear complexities. In Proceedings of the
IEEE/CVF winter conference on applications of computer vision. 3531–3539.

[26] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[27] Qiaoyu Tan, Jianwei Zhang, Ninghao Liu, Xiao Huang, Hongxia Yang, Jingren
Zhou, and Xia Hu. 2021. Dynamic memory based attention network for sequential
recommendation. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 35. 4384–4392.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 30 (2017).

[29] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: Self-attention with linear complexity. arXiv preprint arXiv:2006.04768
(2020).

[30] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. 2020. SSE-PT:
Sequential recommendation via personalized transformer. In Proceedings of the
14th ACM conference on recommender systems. 328–337.

[31] Jiyuan Yang, Yuanzi Li, Jingyu Zhao, Hanbing Wang, Muyang Ma, Jun Ma,
Zhaochun Ren, Mengqi Zhang, Xin Xin, Zhumin Chen, et al. 2024. Uncovering Se-
lective State Space Model’s Capabilities in Lifelong Sequential Recommendation.
arXiv preprint arXiv:2403.16371 (2024).

[32] Enming Yuan, Wei Guo, Zhicheng He, Huifeng Guo, Chengkai Liu, and Ruiming
Tang. 2022. Multi-behavior sequential transformer recommender. In Proceedings
of the 45th international ACM SIGIR conference on research and development in
information retrieval. 1642–1652.

[33] Zhenrui Yue, Yueqi Wang, Zhankui He, Huimin Zeng, Julian McAuley, and Dong
Wang. 2024. Linear recurrent units for sequential recommendation. In Proceedings
of the 17th ACM International Conference on Web Search and Data Mining. 930–
938.

[34] Sheng Zhang, Maolin Wang, Yao Zhao, Chenyi Zhuang, Jinjie Gu, Ruocheng
Guo, Xiangyu Zhao, Zijian Zhang, and Hongzhi Yin. 2024. EASRec: Elastic
Architecture Search for Efficient Long-term Sequential Recommender Systems.
arXiv preprint arXiv:2402.00390 (2024).

[35] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recom-
mender system: A survey and new perspectives. ACM computing surveys (CSUR)
52, 1 (2019), 1–38.

[36] Kesen Zhao, Lixin Zou, Xiangyu Zhao, Maolin Wang, and Dawei Yin. 2023. User
retention-oriented recommendation with decision transformer. In Proceedings of
the ACM Web Conference 2023. 1141–1149.

[37] Xiangyu Zhao, Maolin Wang, Xinjian Zhao, Jiansheng Li, Shucheng Zhou, Dawei
Yin, Qing Li, Jiliang Tang, and Ruocheng Guo. 2023. Embedding in recommender
systems: A survey. arXiv preprint arXiv:2310.18608 (2023).

[38] Xiangyu Zhao, Maolin Wang, Xinjian Zhao, Jiansheng Li, Shucheng Zhou, Dawei
Yin, Qing Li, Jiliang Tang, and Ruocheng Guo. 2023. Embedding in Recommender
Systems: A Survey. arXiv preprint arXiv:2310.18608 (2023).

[39] Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. 2022. Filter-enhanced
MLP is all you need for sequential recommendation. In Proceedings of the ACM
web conference 2022. 2388–2399.

[40] You Zhou, Xiujing Lin, Xiang Zhang, Maolin Wang, Gangwei Jiang, Huakang Lu,
YupengWu, Kai Zhang, Zhe Yang, KehangWang, et al. 2023. On the opportunities
of green computing: A survey. arXiv preprint arXiv:2311.00447 (2023).

GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada

1 2 3 4
Number of GLINT-RU layers L

0.292

0.294

0.296

0.298

N
D

C
G

@
10

NDCG@10 with Different L
GLINT-RU

Figure 6: Impacts of 𝐿 on the model performance.

Algorithm 1 Optimization Algorithm of GLINT-RU

Input: User-item interactions S = [𝑠1, · · · , 𝑠 |U |], corresponding
ground-truth labels 𝑦
Output: Well-trained weights W∗ of model 𝑓
1: Randomly initialize the model parameters W∗.
2: 𝑡 = 0 (𝑡 represents the number of iteration)
3: for Epoch in 1, . . . , max epoch do
4: for Batch in 1, . . . , batch number do
5: Sample training batch data 𝑺′ from S.
6: Generate predictions from 𝑓 (𝑺′).
7: Calculate Loss according to Eq.(14).
8: Update the expert mixing weights 𝛼𝑖 using Eq.(10).
9: Update parameters W via minimizing the loss L.
10: if Converged then
11: Return 𝑓 and parameters W∗.
12: end if
13: end for
14: end for
15: Return 𝑓 and parameters W∗.

A Model Training Methods
In this section, we introduce the details of the training methods
of GLINT-RU, including the loss function and the optimization
algorithm of GLINT-RU displayed through pseudo-code.

Based on the prediction score in Eq.(13), we adopt the cross
entropy loss function defined below for training GLINT-RU:

L =

𝑛𝑖∑︁
𝑖=1

(𝑦 log(𝑦𝑖) + (1 − 𝑦) log(1 − 𝑦𝑖)) , (14)

where 𝑦 are the ground-truth labels of the user-item interactions.
Now we can train GLINT-RU by following the guidance in Algo-
rithm 1. As can be seen in the optimization algorithm, the training
process of GLINT-RU can be easily implemented. The paralleled
expert linear attention and dense selective GRU can be balanced
by updating mixing weights. Additionally, to help GLINT-RU find
a better local optimal solution, we follow the suggestion of [8]
to initialize the model parameters W, which helps prevents the
vanishing/exploding gradient problem.

B Hyperparameter Settings
In this section, we will introduce the hyperparameter settings of
our GLINT-RU and the baselines, and offer implementation details
for reproducibility.

The parameter settings of all baselines are displayed in Table
5. In addition to the hyperparameter settings in Table 5, we also
set the number of interests in LightSANs to 5, as the the average
sequence length is less than 10, which is shown in Table 1.We set the
expansion factor in Mamba4Rec as 2, and set the expansion factor
in SMLP4Rec as 1 to avoid the GPU memory occupation error. The
feature selection in SMLP4Rec is consistent with the settings in the
original paper. [7]. For ML-1M dataset, we choose [’genre’, ’movie
title’, ’release year’] as the input features in the SMLP structure.
And for Amazon Beauty and Games, we select [’categories’, ’brand’]
as the input features. These features are employed to enhance the
prediction performance from the item ids in SMLP4Rec.

C Ablation Study: Activation Functions
Unlike ReLU, which has a sharp kink at zero, SiLU is smooth and
continuously differentiable. This smoothness facilitates better gra-
dient flow during backpropagation, leading to faster and more
stable training. Additionally, SiLU mitigates the vanishing gradient
problem more effectively than Sigmoid and Tanh, as its gradient
does not saturate as quickly, allowing for more efficient training of
deeper networks. Incorporating SiLU as the activation function in
the gate introduces non-linearity while retaining important item
information and filtering out irrelevant item information, which is
advantageous for complex tasks. Studies have demonstrated that
SiLU enhances training stability and performance in deep learn-
ing models. In practical applications, user-item interactions often
contain noise, as some selected items may be irrelevant. Under
such conditions, employing SiLU typically achieves higher accu-
racy compared to traditional activation functions like ReLU and
ELU. To further verify the effectiveness of the SiLU activation func-
tion, we conducted additional experiments where SiLUwas replaced
by ELU, Sigmoid, and ReLU in the dense selective gate. The results
are presented in Table 6.

D Parameter Analysis: Layer Number
In this section, we conduct the parameter analysis on the number of
layers 𝐿 to observe the model’s accuracy and efficiency in stacked
GLINT-RU. We change the number of GLINT-RU layers from 1 to
4, and evaluate the model performance with NDCG@10 using the
dataset Amazon Beauty. The results are shown in Figure 6.

From Figure 6, it is evident that as the number of layers in-
creases, the accuracy of the GLINT-RU model exhibits a relatively
gradual upward trend. This indicates that stacking GLINT-RU lay-
ers contributes positively to improving accuracy. However, this
improvement is not pronounced, and the model’s performance
may even slightly decline when the number of layers becomes ex-
cessively large. Additionally, we analyze the model efficiency of
GLINT-RU in Table 7: The results in Table 7 indicate that as the
number of layers increases, the efficiency of GLINT-RU decreases
rapidly. Combined with the previous model performance analysis,
we can conclude that under resource constraints, using only one
layer of efficient GLINT-RU can achieve high model efficiency and
accuracy simultaneously.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sheng Zhang, et al.

Table 5: Hyperparameter settings of GLINT-RU and the baselines.

Model Dataset hidden size weight decay dropout layers heads max length kernel size train&eval batch size

GRU4Rec
ML-1M 128 0 0.2 2 - 200 - [2048, 2048]
Beauty 64 0 0.5 2 - 100 - [2048, 2048]
Games 64 0 0.5 2 - 100 - [2048, 2048]

BERT4Rec
ML-1M 128 0 0.2 2 8 200 - [2048, 2048]
Beauty 64 0 0.5 2 8 100 - [2048, 2048]
Games 64 0 0.5 2 8 100 - [2048, 2048]

SASRec
ML-1M 128 0 0.2 2 8 200 - [2048, 2048]
Beauty 64 0 0.5 2 8 100 - [2048, 2048]
Games 64 0 0.5 2 8 100 - [2048, 2048]

LinRec
ML-1M 128 0 0.2 2 8 200 - [2048, 2048]
Beauty 64 0 0.5 2 8 100 - [2048, 2048]
Games 64 0 0.5 2 8 100 - [2048, 2048]

LightSANs
ML-1M 128 0 0.2 2 8 200 - [2048, 2048]
Beauty 64 0 0.5 2 8 100 - [2048, 2048]
Games 64 0 0.5 2 8 100 - [2048, 2048]

SMLP4Rec
ML-1M 128 0 0.2 2 - 200 - [2048, 2048]
Beauty 64 0 0.5 2 - 100 - [2048, 2048]
Games 64 0 0.5 2 - 100 - [2048, 2048]

Mamba4Rec
ML-1M 128 0 0.2 2 - 200 3 [2048, 2048]
Beauty 64 0 0.5 2 - 100 3 [2048, 2048]
Games 64 0 0.5 2 - 100 3 [2048, 2048]

GLINT-RU
ML-1M 128 0 0.2 2 8 200 3 [2048, 2048]
Beauty 64 0 0.5 2 8 100 3 [2048, 2048]
Games 64 0 0.5 2 8 100 3 [2048, 2048]

Table 6: Ablation study on activation functions in the dense
selective gate.

Method Recall@10 MRR@10 NDCG@10
Default (SiLU) 0.4472 0.2498 0.2964
ReLU 0.4293 0.2300 0.2770
Sigmoid 0.4328 0.2319 0.2793
ELU 0.4308 0.2321 0.2789

Table 7: Efficiency analysis on the parameter 𝐿

𝐿 Inference Time Training Speed GPU Memory
1 278ms 3.8s/epoch 2.62GB
2 397ms 6.2s/epoch 5.17GB
3 501ms 8.9s/epoch 6.97GB
4 610ms 11.8s/epoch 8.86GB

E Ablation Study: Amazon Beauty Dataset and
Video Games Dataset

To further verify the effectiveness of the components in GLINT-
RU, we conducted more ablation studies on the Amazon Beauty
and Amazon Video Games datasets. The results are shown in Ta-
bles 9 and 8. The results demonstrate that the gated GRU module
plays a critical role in capturing dependencies among interactions
and fine-grained positional representations. The linear attention
mechanism enhances the model’s ability to capture interactions
between relevant items within the sequence. Adding a temporal

convolution layer improves performance by incorporating contex-
tual information from adjacent items. Finally, the gated MLP block
filters complex information from the expert mixing block, further
contributing to the overall performance. These findings indicate
that all components of GLINT-RU are effective and collectively
contribute to its high performance on both the Amazon Beauty and
Amazon Video Games datasets.

Table 8: Ablation study results on Amazon Video Games.

Method Recall@10 MRR@10 NDCG@10
Default (GLINT-RU) 0.6573 0.3549 0.4266
w/o GRU 0.6379 0.3125 0.4023
w/o Linear Attention 0.6459 0.3375 0.4106
w/o Temporal Conv1d 0.6443 0.3351 0.4084
w/o Gated MLP 0.6416 0.3339 0.4068

Table 9: Ablation study results on Amazon Beauty.

Method Recall@10 MRR@10 NDCG@10
Default (GLINT-RU) 0.4472 0.2498 0.2964
w/o GRU 0.4239 0.2298 0.2755
w/o Linear Attention 0.4296 0.2314 0.2781
w/o Temporal Conv1d 0.4246 0.2290 0.2751
w/o Gated MLP 0.4265 0.2308 0.2768

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Gated Recurrent Units
	2.3 Linear Attention Mechanism

	3 METHODOLOGY
	3.1 Framework Overview
	3.2 Item Embedding Layer
	3.3 Dense Selective GRU
	3.4 Expert Mixing Block
	3.5 Gated MLP Block
	3.6 Complexity Analysis

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Baselines
	4.3 Implementation
	4.4 Overall Performance (RQ1)
	4.5 Efficiency Comparison (RQ2)
	4.6 Ablation Study (RQ3)
	4.7 Parameter Analysis

	5 Related Works
	6 Conclusion
	References
	A Model Training Methods
	B Hyperparameter Settings
	C Ablation Study: Activation Functions
	D Parameter Analysis: Layer Number
	E Ablation Study: Amazon Beauty Dataset and Video Games Dataset

